A lunar base

You may be wondering whether we have the ability to have a permanent base on the Moon. In the late 1960s and early 70s twelve men set foot on the Moon. Nobody has set foot on the Moon since… but why?

The answer is quite unfortunate really. People got bored.

In the 60s the Soviet Union and the United States – arguably the two most powerful nations at the time – were racing to the Moon. Russia won the race to send a man into space – and return him safely. Russia also won the race to construct a space station. America however won the all important race to the Moon.

For a space explorer looking up into the night sky in the 50s and 60s, the goal was always to get to the Moon. So what happened when America got there? The space race lost public support. People started questioning why there was a need to go into space, why money wasn’t being (better) spent elsewhere. The US had shown that it could get to the Moon, and it could get there first, so why carry on?

Today

As the recent crash of the Virgin Galactic test flight and the ISS destined rocket which exploded show, going into space can still be dangerous. That said however with today’s technology we are more than capable of travelling into space reasonably safely.

It is thought that the Moon has a lot of water buried within its surface. Water is a critical element required by us to live. Water can also be used to make rocket fuel. Rocket fuel uses hydrogen and oxygen – the key components of water.

Rockets on Earth need huge amounts of fuel to escape the reaches of Earth’s gravity. The Moon is significantly lighter than Earth, and therefore rockets would need much less fuel to take off. This makes flights into space (to Mars for example) much more viable, if they take off from the Moon.

A manufacturing plant on the MoonNow, you may be thinking that we would need to get the rockets to the Moon in the first place, so why waste time relaunching them from the Moon? Well maybe we wouldn’t. The Moon has many of the resources we would need to build rockets. We would be able to create manufacturing bases on the Moon, with very little supplies from Earth. Progress would only be accelerated by the use of our new friend (or foe?) 3D printers.

All electrical power could be provided by solar panels – which we could build on the Moon. Lunar sun is very predictable, and with no atmosphere, the energy we could generate would be much greater than here on Earth.

Moon Base

A permanently manned Moon base is not a new idea. The US has had many plans over time to create a Moon base – originally for military reasons, however now for other reasons like energy and space travel. Japan, Russia and India are also currently all exploring the concept of establishing a base on the Moon within the next few decades.

What a Moon base could look like

The Moon could be a great service station for rockets. Missions into outer space could use the Moon as a pit stop to pick up supplies and refuel, before going on their way.

The Moon’s potential for solar energy could also be another interesting use for a Moon base. If we could cover vast areas of the Moon in solar panels and then transmit the energy back to Earth, we would be able to solve the global energy crisis. Naturally you would have to somehow persuade fossil fuel companies that it is a good idea first – and considering the power and influence they have, this could be difficult.

We currently have the technology and capabilities to create a permanent lunar base, now all we need is the enthusiasm and funding to make it happen.

What do we need to know about nanotechnology?

As you may already know, nanosciences innovative advances encompass technology, medicine and manufacturing and so affect our world to more and more of an extent. Some in the scientific community are hesitant to endorse the developments and wonder about the consequences of these advances.

However, fascination surrounding this field, and lets not forget excitement over the potential for profit, is at the forefront and pushing nanoscience forward.

Nano-Imaging

When we think of a nanometer, we need to wrap our minds around the fact that this is a measurement of a substance 100,000 times smaller than a single human hair. Before any form of mass production using these substances is in place, researchers need to accurately image them to learn of their topography and composition. Observation of nanomaterials is achieved by impressively powerful microscopes. The atomic force microscope (AFM) provides for extremely high (nanometer) resolution.

Nanotechnology being used in medicine

Nanotechnology being used to modify red blood cells

Today we hear of many developments and new manners of operation devised for the AFM paving the way for serious strides in nanotechnology. Therefore, with advances in nano-imaging comes progressive research and subsequent manufacturing which has benefits as well as potential risks.

First of all, industry, research bodies and governments are not aware of the amount of nanomaterials being produced. Without knowing these amounts, how is it possible to know the amount of potential exposure and therefore risks?

Does the law protect us now?

Governments do have regulations and guidelines but new materials like these have proven difficult to classify and sometimes are grouped together with already existing materials and so not independently classified at all. Other countries are already climbing aboard the nanotechnology bandwagon in a big way and governments need to properly regulate the importation of products containing these materials. How much to regulate leads to much discussion. The “bottom line” question needs to be answered…. “Is nanotechnology going to do more harm than good?”

All in all, the most basic risk assessments cannot be made because of a lack of information. Without appropriate analysis, we cannot have adequate laws.

What are our concerns?

Communities are becoming more ‘green’ in their approach to environmental issues. Concerns are valid over the potential these substances have to contaminate our water supplies or potentially harm plants and animal populations. After all, environmental sustainability is the only option and so, industry must always remain accountable.

The potential risks to human health and the environment differ greatly from risks associated with conventional materials which exhibit different characteristics.

Scientists are at work to increase their understanding of how nanomaterials interact with biological systems such as cell membranes so as to minimize any adverse effects. However, nanomaterials are still marketed commercially by the ton. They are in our cosmetics, sunscreens and lotions, car wax, paints and clothing. As research progresses and findings can be marketed in products, the list grows. The threat of potential toxicity of nanomaterials entering our tissues and cells exists and there could be real health implications.

Industry cannot allow for health, environmental or ethical concerns to decrease or halt the progress of nanotechnology. There is an agenda here – in the end it is much to do with a fat wallet.

Developments in this field are exciting but at what cost?
The point here is, don’t be afraid to speak up and ask the questions that matter.

For further reading, check out my article on nanotechnology on my site Microscope Master. Links in my bio.