Ocean Cleanup

plastic-bottle-beach
We have all heard about the problem of the oceans getting cluttered up with plastic. Unfortunately, solving the problem of marine plastic pollution is not as simple as picking up all of the pieces of plastic. While a lot of plastic pollution is concentrated in the gyres, it is not floating in a single mass on the surface. Pieces of plastic are distributed vertically, through the water column. Plastic breaks down into tiny particles in the ocean, making clean-up efforts very difficult. One of the many challenges of cleanup is how to remove the plastics from the ocean without also removing or damaging marine life.

The Natural Resources Defense Council website has lots of information related to the problem. They also describe some of the possible solutions as also being problematic. This is what they say about bioplastics and their marketing:

“The term “bioplastics” is increasingly being used to refer to a wide range of products, some of which are primarily or entirely plant-derived, others of which contain fossil-fuel-derived plastic, and all of which might be biodegradable, compostable, recyclable, some combination, or none of the above. While many companies are marketing these products as “green” alternatives to traditional plastics, the reality is more complex. Even biodegradable and compostable plastics are typically designed to break down efficiently only in commercial composting systems; on land or in water, these plastics generally persist long enough to cause potential hazards to water systems and wildlife. Any plastic, regardless of whether it is derived from plants or from fossil fuels, should be properly disposed of, and ideally should be recyclable and/or compostable to avoid the need to landfill.

Besides the issues related to improper disposal, production of bioplastics is also potentially problematic. Corn-based bioplastics are some of the most widely available bioplastics today — while these represent a positive step in the growing market toward finding alternatives to non-renewable, fossil-fuel-derived plastic, they rely on the production of corn, which raises concerns about agricultural impacts on land use, food production and global warming. These production impacts are all significantly reduced by specifying bioplastic products made from waste-based agricultural residues (residues left over after harvest from an existing agricultural land use which would otherwise be treated as waste). Replacing some current plastics with renewable bioplastics (especially those made using agricultural residues) is a promising way to reduce our reliance on fossil fuels, but more research is needed to develop better products which will reduce the reliance on non-renewable resources and address concerns associated with marine plastic pollution”.

Interesting food for thought, so bioplastics do not seem to offer a solution. What we need to do is stop putting plastics into the oceans and try to get the plastic out that is already there.

The Ocean Clean up organization believe they have found a viable way to proceed with the removal part of my great plan, and have launched a crowdfunding appeal to raise the money to put their idea into full production. 19-year-old Boyan Slat has been leading a team that have designed a system that helps the ocean to clean itself. The system uses a series of solid floating barriers that are placed in the ocean. The currents and wind force the ocean to pass under the barriers, but anything that floats or is neutral in the water (plastic for example) cannot pass and so is collected in the boom. The plastic collected can then be reused. The website has a more detailed explanation and a glossy video.

This concentration of the waste means that it can then be removed from the booms easily, and at much lower cost both economically and environmentally that using other methods. Check out the concept here.

So all they need is to raise $2 million to step up into the next phase. At the time of writing the crowdfunding campaign has raised more than $765,000, and with 80 days to go it looks hopeful to me. If you have a few quid to spare it might be a good investment.

Readers might like to have a look at a post I wrote earlier this year about the INSS meeting in Charlotte. The post includes a review and photos of an art installation called “The Real Toy Story”, that includes a giant baby stuffed with waste plastic taken from the sea.

Nanofoods

This week I want to put two of my little pets together. Nanotechnology and food might sound like two very different topics, like a cat and a gerbil to use the pet metaphor, but you would be surprised. Many products in fact have manufactured nanoparticles in them, and we eat them.

Now we might ask if this is safe, and some would say of course it is. Some have great reservations about it, and some point to the fact that there has been little research done into the matter and that it might be better not to eat them anyway.

Friends of the Earth US have recently published a report entitled Tiny Ingredients, Big Risks, and it is free to download here.

To give you a flavour of what is on offer, I just take a few lines from the report:

A ten fold increase in unregulated and unlabeled nanofoods over the last 6 years

Nanomaterials are found in a broad aray of everyday food (cheese, chocolate, breakfast cereals etc)

Major food companies are investing billions in nanofood and packaging

An increasingly large body of peer reviewed evidence indicates that nanomaterials may harm human health and the environment

Nano agrochemicals are now being used on farms so entering the environment

US regulation is wholly inadequate

Public involvement in decision-making regarding these problems is necessary

The products containing unlabeled nano-ingredients range from Kraft American Singles to Hershey’s chocolate. They are made by major companies including Kraft (KRFT), General Mills (GIS), Hershey (HSY), Nestle (NSRGY), Mars, Unilever (UL), Smucker’s (SJM) and Albertsons. But due to a lack of labeling and disclosure, a far greater  number of food products with undisclosed nanomaterials are likely currently on the market.

To give you an idea we are talking about silver, titanium dioxide, zink and zink oxide, silicon and copper, as well as the traditional carbon nano tubes that are found in food packaging and freshness labelling technologies.

The report documents 85 food and beverage products on the market known to contain nanomaterials — including brand name products, and points out that the nanofood industry will soon be worth $20 billion.

This is a detailed report, it lists the products that have been found to contain these materials, the health problems associated with ingestion of such materials in animals and calls for action. It does not make for light reading, but it appears to me to be a technology that is being sneaked in through the back door, and soon like genetic modification will be difficult to avoid.

Take a look back at my food series for more tasty stuff.

Deep Sea Mining Agreement

bbc bulk cutter

Time moves like molasses as they say here, but it moves.

Almost exactly a year ago I wrote a post called Mining the Seabed. Almost exactly a year before that I wrote a post about the possibility of sending robots to mine asteroids. All science fiction I heard you say, but oh wait.

A couple of weeks ago Nautilus Minerals, a Canadian mining corporation, signed a deal with the Papua New Guinea government to start digging (mining) the seabed just off their coast.

The mining will be done from the surface. A series of large machines (310 tonnes), one of which we see in the photo above, will be operated from ships, placed on the seabed and will effectively break up the top layer so that the ore can be pumped up as slurry (muddy stuff).

Now this doesn’t sound too good to me, but the operators claim that “It’s a resilient system and studies show that life will recover in 5-10 years. An active venting site 1km to the south East has the same bugs and snails and the current will carry the bugs and snails to the mine site. We expect it to recover quite quickly.”

Greenpeace don’t agree. The truth is we don’t really know who is right. What we do know though is that there is big money involved. The bed is rich in gold and copper, and we need this stuff for far more than wedding rings and rheumatism charms.

Now as some of you will know, my mission in life is to promote responsible innovation through my work at the Bassetti Foundation, and we can take a look at the developments above from this perspective. We all use gold and copper, and it is in great demand. My computer won’t work without electricity, copper cables, solder, silicon etc, so we can be as forthright as we like but we are the ones creating the demand.

Companies are looking to supply us and make a profit, there now seems to be a viable mining approach that will involve getting it from under the oceans. Nobody will be able to stop them doing it, so we need to think about how they are going to do it, and where.

There is probably no real way of knowing how quickly the seabed will reform or how much damage is going to be caused, there are no qualified experts in mining to conduct the operations (it’s a first time gig) and international regulation still needs to be drawn.

There does not seem to have been much public debate, we won’t be able to monitor proceedings ourselves and at the best of times, mining is a dirty affair.

So this could be a disaster waiting to happen, or it could be a fantastic opportunity to create a framework that could address all of the problems above and be applicable in other fields.

Last year some academics published an article about their experiences working in a geoengineering project. Similar set of problems as described above, but social scientists were involved in the project and participated in the decision-making process. The outcome was extremely interesting, the project scientists decided to suspend their research and rethink their positions. The article is free to download here, where there is also a more precise description. It’s easy to read and very interesting.