Going Dutch, Heated Cycle Paths and Glowing Roads

glow roads

As regular readers may know, I am currently living my life straddled between two continents. I am based in Boston in the USA, but technically resident of Italy. To add to the confusion I am going to live in the Netherlands in June.

Why the Netherlands? I hear you all ask in unison. Bikes and technological advances in road safety might be one reason (although there are also others).

So first to bikes. I am a cyclist myself, I ride a 1973 Triumph 3 speed, it is a lovely machine. This winter has been a harsh one though, even for Boston standards, and the roads and pavements were covered in ice for long periods of time. As in many other places the city council sends trucks out to throw salt all over the place, which is not very good for the roads, cars, or water supply.

So to the Netherlands. They certainly know how to treat cyclists there. The Dutch city of Wageningen is experimenting with an innovative system that will help keep cyclists safe without the salt problem. A 50 metre stretch of cycle path has been replaced with concrete plates that are heated with stored thermal energy, preventing the path from becoming icy and slippery.

Yes, a heated cycle lane. It is fully recyclable, maintenance free and the system is carbon neutral. Here is the story in Dutch. Sorry but I can’t find anything in English so you will have to try a translation tool.

And while they are at it (the Dutch) they have developed a paint for their new heated paths that also stores energy during the day so that it can glow at night. There is no need for street lights in some areas if the sides of the roads light up so it could offer a great energy saving benefit. They are trialling it out on a short stretch of motorway at the moment, and have other ideas for its use. How about painting snowflakes into the road that only illuminate when the temperature drops and could create ice? Temperature sensitive paint is also undergoing testing, also a Dutch development. Check out this report on the BBC.

I very much look forward to my move to the Netherlands, spending the winter days on my bike, riding home on an ice free path through the woods, lit by painted strips down either side and all without the need for any electricity.

Earth Day

earth

Today is Earth Day. It is the 44th time that we celebrate this planet that we call home. The celebration started in 1970, and is the brain child of US Senator Gaylord Nelson.

Nelson asked Denis Hayes to organize a day of awareness, on April 22nd, and by the end of 1970, the U.S. Environmental Protection Agency had been established, and efforts to improve air and water quality were gaining political traction.

Today is a time of celebration, of love for our little speck in space. And it is a lovely speck, there are some quite beautiful places to see and experience dotted across the surface.

This year’s Earth Day boasts an organization that includes more than 22 000 organizations and hopes to conduct 2 billion acts of awareness and improvement. It is an education day, that has green schools and a Leadership Center.

Why not have a look at the organization’s website, and look around your little piece of the speck to see what you can do to raise awareness of the problems faced by our world and maybe plant a tree, collect some plastic for recycling, weed an invasive species or get into a debate with your kids?

There are plenty of opportunities!

MIT Researchers Develop ‘Living Materials’

My friends from down the road at MIT have just announced that they have managed to make bacterial cells produce biofilms that can act as “living materials.”

In the press release that you can read here, the researcher state that they can use the man-made living materials to conduct light or generate energy. Like live cells, the living materials are environmentally responsive, but also have all the traits of non-living particles.

To quote senior author Timothy Lu, an MIT assistant professor of electrical engineering and biological engineering, “Our idea is to put the living and the non-living worlds together to make hybrid materials that have living cells in them and are functional. It’s an interesting way of thinking about materials synthesis, which is very different from what people do now, which is usually a top-down approach.”

Lu said the practical, everyday uses for the research would be self-healing materials, solar cells, diagnostic sensors and more.

The paper was published in the journal Nature Materials.

The researchers used mostly the E. coli bacteria for its naturally produced curli fibers biofilm. Curli fibers are proteins that stick E. coli to various surfaces, which is probably one of the things we don’t generally like about it, but they are useful for the project because they help retain non-living particles.

e-coli

E-coli

The research team also demonstrated how the cells even appeared to communicate with each other, designing living materials that could coordinate the stimulation of each cell to control the composition of the biofilms.

To quote Prof Lu again “It’s a really simple system but what happens over time is you get curli that’s increasingly labelled by gold particles. It shows that indeed you can make cells that talk to each other and they can change the composition of the material over time. Ultimately, we hope to emulate how natural systems, like bone, form. No one tells bone what to do, but it generates a material in response to environmental signals”.

I like the bone analogy. Some months ago I visited another lab here in Cambridge where they use natural animal traits to design applications for science. You can read about my visit to the Karp Laboratory for Advanced Biomaterials and Stem Cell Based Therapeutics here, but the general idea is that researchers mimic the natural world. Lab Director Dr Jeffrey Karp explained that evolution offered incredible examples of innovation that could be used for scientific research today. We were shown examples of how porcupine needles are used to model surgical needles, and how gecko climbing techniques can be applied to medical adhesive design.

I look forward to learning about possible applications.